相比于其它计算机围棋程序相关团队,AlphaGo由一个相对较大的团队研发发,显然使用了更多的计算资源(详见下文)。该程序使用了一种新颖的方式实现了神经网络和蒙特卡洛树搜索(Monte Carlo tree search,MCTS)的结合,并经过了包含监督学习和自我训练的多个阶段的训练。值得注意的是,从评估它与人工智能进步关系的角度来看,它并没有接受过端到端(end-to-end)的训练(尽管在AAAI 2016上Demis Hassabis表示他们可能会在未来这样做)。另外在MCTS组件中它还使用了一些手工开发的功能(这一点也常常被观察者忽略)。相关论文宣称的贡献是‘价值与策略网络(value and policy networks)’的构想和他们整合MCTS的方式。论文中的数据表明,使用这些元素的系统比不使用它们的系统更为强大。